Wavelet adaptation for automatic voice disorders sorting
نویسندگان
چکیده
Early diagnosis of voice disorders and abnormalities by means of digital speech processing is a subject of interest for many researchers. Various methods are introduced in the literature, some of which are able to extensively discriminate pathological voices from normal ones. Voice disorders sorting, on the other hand, has received less attention due to the complexity of the problem. Although, previous publications show satisfactory results in classifying one type of disordered voice from normal cases, or two different types of abnormalities from each other, no comprehensive approach for automatic sorting of vocal abnormalities has been offered yet. In this paper, a solution for this problem is suggested. We create a powerful wavelet feature extraction approach, in which, instead of standard wavelets, adaptive wavelets are generated and applied to the voice signals. Orthogonal wavelets are parameterized via lattice structure and then, the optimal parameters are investigated through an iterative process, using the genetic algorithm (GA). GA is guided by the classifier results. Based on the generated wavelet, a wavelet-filterbank is constructed and the voice signals are decomposed to compute eight energy-based features. A support vector machine (SVM) then classifies the signals using the extracted features. Experimental results show that six various types of vocal disorders: paralysis, nodules, polyps, edema, spasmodic dysphonia and keratosis are fully sorted via the proposed method. This could be a successful step toward sorting a larger number of abnormalities associated with the vocal system.
منابع مشابه
A New Algorithm for Voice Activity Detection Based on Wavelet Packets (RESEARCH NOTE)
Speech constitutes much of the communicated information; most other perceived audio signals do not carry nearly as much information. Indeed, much of the non-speech signals maybe classified as ‘noise’ in human communication. The process of separating conversational speech and noise is termed voice activity detection (VAD). This paper describes a new approach to VAD which is based on the Wavelet ...
متن کاملA New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملAutomatic spike sorting for extracellular electrophysiological recording using unsupervised single linkage clustering based on grey relational analysis.
Automatic spike sorting is a prerequisite for neuroscience research on multichannel extracellular recordings of neuronal activity. A novel spike sorting framework, combining efficient feature extraction and an unsupervised clustering method, is described here. Wavelet transform (WT) is adopted to extract features from each detected spike, and the Kolmogorov-Smirnov test (KS test) is utilized to...
متن کاملIntelligent Voice Recognition System Based on Acoustic and Speaking Fundamental Frequency Characteristics
Speech recognition is a fascinating application of Digital Signal Processing and has many real-world applications. In this paper, a speech recognition system is developed for isolated spoken words using Discrete Wavelet Transforms (DWT) and Artificial Neural Networks (ANN). Speech signals are one-dimensional and are random in nature. This paper investigates Automatic Speech Recognition of gende...
متن کاملAdult Voice Recognition System using Text Variable Phoneme Model and Coarse Speaking Fundamental Frequency Characteristics
-------------------------------------------------------Abstract--------------------------------------------------------Speech recognition is a fascinating application of Digital Signal Processing and has many real-world applications. In this paper, a speech recognition system is developed for isolated spoken words using Discrete Wavelet Transforms (DWT) and Artificial Neural Networks (ANN). Spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers in biology and medicine
دوره 43 6 شماره
صفحات -
تاریخ انتشار 2013